SESSION ID: AFD-W11

A Sherlock Holmes Mystery: AI-Powered Behavioral Forensics

Uri Rivner
Chief Cyber Officer
BioCatch
LinkedIn: Uri Rivner

Erin Englund
Senior Threat Analyst
BioCatch
LinkedIn: Erin Englund
130 years ago...

A Case of Identity

A dear fellow," said Sherlock Holmes as we sat on either side of the fire in his lodgings at Baker Street, "life is infinitely stranger than anything which the mind of man could invent. We would not dare to conceive the things which are really mere commonplaces of existence.
Meet the Characters

Soundbytes are from a BBC broadcast of A Case of Identity adapted by Peter Mackie

- **Ms. Mary Sutherland (the Victim)**
 - Father died; mother re-married
 - Allowance of 100 pounds / year ($16,000 in today’s terms)

- **Mr. James Windibank (the Stepfather)**
 - Draws the funds for Mary, deposits in her mother’s account
 - Doesn’t allow her to go to the Gasfitter’s ball
 - But... she goes anyway

- **Mr. Hosmar Angel (the Lover)**
 - Met Mary at the ball when stepfather was abroad
 - When the stepfather returned, he was furious at Mary!
 - But love conquers all. Mary and Hosmar fell in love
 - He sent her typewritten love letters
 - They were engaged to marry – *a very serious business in Victorian times* - but he then disappeared mysteriously
How did Holmes Crack the Case?
Generic Criminal Patterns

- **Spoofing Indicators**
 - Hosmar Angel was using tinted glasses ‘against the glare’
 - His voice had a speech impediment ‘due to a weak throat’
 - Masked his face with a moustache and a pair of bushy whiskers

- **Suspicious Behavior**
 - Did not provide his exact address
 - Preferred taking walks in the evenings
 - Insisted on writing letters with a typewriter, including the signature

- **Time Sequence Analysis**
 - Meetings with Hosmar always took place when the stepfather was in France

- **High-Risk events**
 - Engaged to Mary after their first walk (!)
 - Made her swear that whatever happened, she will always be true to him
So... A Case of Identity is solved
Hosmar Angel is none other than Mr. Windibank, the stepfather
He introduced this traumatic episode so that Mary never falls in love, leave home, and depart him from her generous income
Looking at the data science side: there are n features in Holme’s model
In Hosmar’s profile, 2 are very strong + 14 quite distinct
2020: using AI for criminal profiling
How to use AI in digital criminal profiling

- **Data**
 - Device fingerprints
 - Network, Geo location, GPS coordinates
 - Interaction (mouse, keyboard, accelerometer, touch)
 - Context data – what is the criminal doing? Attack sequence

- **AI/ML**
 - **Benefits over blacklists, link analysis and rules:**
 - Adapts as criminals adjust resources and behaviors
 - Allows looking at a very large number of independent variables, even if each individually is not too ‘incriminating’
 - Even if they knew what is being tracked, how quickly and easily can criminals change *all* of their behaviors?

- **Sharing**
 - Consortium data sharing allows tracking criminals across the industry
Digital Data Sources: Deep Dive

Building a Criminal Digital Profile
Training the Model

When the process starts, the samples (in our case, criminal sessions) are not separated from each other and crimes done by the same criminal are not clustered.

Example: Triplet Loss Optimization

Now the crimes are neatly separated. Any new crime should fit an existing cluster (so we know it’s done by that criminal), or start a new cluster (unknown criminal, and future crimes by same person will automatically match the new cluster).
ML vs AI

Machine Learning
- Color
- Height
- Number of petals

Define features

AI: work on raw data
ML vs AI

ML: have data science build features and create criminal profiles (supervised ML)

AI: run deep learning – requires a large setting of known fraud cases, and not ‘explainable’
Digital Forensics: Real World Case Studies
The Trouble with Police Lineups

“Number 4, step forward and yell WHOOMAA, WHOOMAA!!”
An Adaptive Race

UK Online Banking Fraud Losses (in millions)

Source: Fraud Action UK
Dyre: the scariest Trojan in 2015
Top 5 UK retail bank

Phase 1: Preparing for the Act

- A malware-induced 'click' on a link is observed
- User is redirected using MITM capability to an identical but spoofed site
- Presented with a task to complete
- While the user is away, the phone number is automatically being changed to allow criminal to receive OTP

00:12 Session hijacked!

03:01 Back to Normal
- After three minutes, user is redirected back to the session so they can continue as if nothing happened
- User completely unaware of change of phone number
Hand-eye coordination shows strong signs of VNC back-connect capability. This is a nasty RAT case.
The Dyre Operator wrote 4 “letters”...

Case #1

Uncharacteristic use of arrows to scroll up/down. Heavy use of tabs and enter.
The Dyre Operator in Action...
Case #2
The Dyre Operator in Action...

Case #3
The Dyre Operator in Action...

Case #4

Bottom line: Multiple rare characteristics seen in all 4 crimes...
Conclusion: This is the same individual criminal
Serial Killer

Link Analysis (Device/IP): 1400 accounts accessed June 2017 to Jan 2018 – probably by same gang

<table>
<thead>
<tr>
<th>Event Time</th>
<th>Event Type</th>
<th>CUSTOMER_ID</th>
<th>IP</th>
<th>Geo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-11-14 13:19:01.525 UTC</td>
<td>account_creation</td>
<td>1709733973</td>
<td>86.187.165.28</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-14 12:55:59.960 UTC</td>
<td>login</td>
<td>1269454403</td>
<td>86.187.165.28</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-14 12:41:22.121 UTC</td>
<td>login</td>
<td>1700554834</td>
<td>86.187.165.28</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-14 12:11:17.436 UTC</td>
<td>login</td>
<td>1707142348</td>
<td>86.187.165.28</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-13 16:29:42.84 UTC</td>
<td>login</td>
<td>1252987799</td>
<td>86.187.161.56</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-13 16:04:16.905 UTC</td>
<td>login</td>
<td>1206510933</td>
<td>86.187.161.56</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-13 14:04:50.314 UTC</td>
<td>login</td>
<td>1812643420</td>
<td>86.187.161.56</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-13 13:58:52.897 UTC</td>
<td>login</td>
<td>1228778211</td>
<td>86.187.161.56</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-13 12:36:58.155 UTC</td>
<td>login</td>
<td>1751519369</td>
<td>86.187.161.56</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-11 11:04:05.574 UTC</td>
<td>login</td>
<td>1269231715</td>
<td>86.187.161.56</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-11 11:01:56.188 UTC</td>
<td>login</td>
<td>1347667687</td>
<td>86.187.161.56</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-11 11:00:58.557 UTC</td>
<td>login</td>
<td>1769702297</td>
<td>86.187.161.56</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-11 09:36:09.927 UTC</td>
<td>login</td>
<td>1181569171</td>
<td>86.187.161.56</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-11 09:35:32.808 UTC</td>
<td>login</td>
<td>1179587048</td>
<td>86.187.161.56</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-11 09:31:44.448 UTC</td>
<td>login</td>
<td>1785552971</td>
<td>86.187.161.56</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-11 09:17:58.984 UTC</td>
<td>login</td>
<td>1212648632</td>
<td>86.187.161.56</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-10 12:42:49.228 UTC</td>
<td>login</td>
<td>1159007220</td>
<td>86.187.175.83</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-10 12:07:26.97 UTC</td>
<td>login</td>
<td>1236327817</td>
<td>86.187.175.83</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-10 11:51:52.269 UTC</td>
<td>login</td>
<td>1230473965</td>
<td>86.187.175.83</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-10 09:17:57.990 UTC</td>
<td>login</td>
<td>1716227150</td>
<td>86.187.162.75</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-10 09:09:05.317 UTC</td>
<td>login</td>
<td>1344947061</td>
<td>86.187.162.75</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-10 09:04:29.27 UTC</td>
<td>login</td>
<td>1275063724</td>
<td>86.187.162.75</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-10 09:02:28.869 UTC</td>
<td>login</td>
<td>1667391770</td>
<td>86.187.162.75</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-10 09:01:37.505 UTC</td>
<td>login</td>
<td>1291591795</td>
<td>86.187.162.75</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-10 09:00:46.356 UTC</td>
<td>login</td>
<td>1162362599</td>
<td>86.187.162.75</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-10 08:58:36.699 UTC</td>
<td>login</td>
<td>1869677182</td>
<td>86.187.162.75</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-10 08:57:11.678 UTC</td>
<td>login</td>
<td>1629842597</td>
<td>86.187.162.75</td>
<td>GB</td>
</tr>
<tr>
<td>2017-11-10 08:56:27.15 UTC</td>
<td>login</td>
<td>1744623964</td>
<td>86.187.162.75</td>
<td>GB</td>
</tr>
</tbody>
</table>

Criminal Patterns

Device
- New Device for User: 100%
- Device associated with Multiple Users: 100%

Behavior
85% of sessions had a unique combination:
- Use of Arrows to navigate up/down
- Use of both keypad and numpad to type numbers
- Use of double-click

- Looks like vast majority of access is done by a single person.

⇒ Tracking criminal even if they move to totally new devices/ IPs
⇒ Identifying immediate change in genuine user’s behavior
The Bitcoin Crew
Source: Simplex.com

- 5-10 Bitcoin orders per week during May-August ‘19
- All made from newly created bank accounts, mostly a Top 5 Canadian issuer
- Young buyers, passing verification easily
The Bitcoin Crew

- Deeper analysis shows that *what seemed like independent shoppers had too much in common to be a coincidence*
- Link analysis on meta data shows cluster of *same GPS location for multiple images*

Photo IDs were all taken while placed on same table...
The Bitcoin Crew

- Also, all the selfie verification photos are taken in the **same car**
- Forensics exposes chain of accounts opened online for money laundering and fraud
- Reviewing a single account does not raise suspicion; however, deep link analysis reveals that something isn’t quite right

For more info: gilits@simplex.com
Analyzing Resources: Email, Device

DETECTION REASONS

This campaign was detected because:
1. 92.1% of users in this cluster have high event velocity.
2. 94.1% of users in this cluster have ip_is_from_datacenter = true.
3. 96.0% of users in this cluster have ip_country_code = US.
4. 100.0% of users in this cluster have email_email_provider = yandex.com.
5. 100.0% of users in this cluster have user_agent = Android App Ver 4.35.3 (Android 8.0).

CLUSTER CHARACTERISTICS

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Value</th>
<th>Number of Users</th>
<th>% of Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>user_agent</td>
<td>Android App Ver 4.35.3 (Android 8.0)</td>
<td>51</td>
<td>100.00%</td>
</tr>
<tr>
<td>device_type</td>
<td>Generic mobile Android 8.0</td>
<td>51</td>
<td>100.00%</td>
</tr>
<tr>
<td>os_version</td>
<td>Android 8.0</td>
<td>51</td>
<td>100.00%</td>
</tr>
<tr>
<td>registration_time_year</td>
<td>2019</td>
<td>51</td>
<td>100.00%</td>
</tr>
<tr>
<td>registration_time_month</td>
<td>2019-02</td>
<td>51</td>
<td>100.00%</td>
</tr>
<tr>
<td>email_email_provider</td>
<td>yandex.com</td>
<td>51</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
Analyzing Resources: Phone account

Synthetic Identities

Phone Intelligence

• Line Tenure: June 14, 2010
• Line Type: MVNO (Tracfone)
• Service Provider Tenure: May 16, 2014
• SIM Tenure:
• Device Tenure:
 • Call Activity: No activity
 • Login Activity: No activity
Synthetic ID Cyber Gang Behavior

Phone, SSN typed in a specific rhythm and grouping

High familiarity with Site: Super fast interaction with Annual Income, Income Source
Profiling Bots

Bot moves through session, makes payment on behalf of user

Bot profiling elements:

- IP and geo-location
- Server ownership
- Device fingerprint
- Device profile (OS, browser, version, user agent analysis)
- Spoofing analysis
- Blacklists and Link analysis
- Consortium checks
- Event sequence
- Behavioral fingerprints
Closing Notes
Whodunit?

- In fraud detection, the goal is to prevent crimes in the most cost-effective way possible, not go after the criminal.
- In criminology, profiling behavior is useful in actually catching the bad guys.
- Holmes’ technique relied heavily on human intuition and manual searching.
- AI-powered criminal profiling can...
 - Prevent future attacks
 - Track threat actors across enterprises using consortium databases
 - Build strong cases against individual hackers within an actor group
 - Assist law enforcement agencies, financial crime investigators, cyber intelligence researchers
- Can the data be shared across enterprises?
- Can criminals expect privacy?
Summary

- 1891: A Case of Identity – generic, individual criminal profiling
- 2020: AI can look at hundreds of device, location, behavior parameters and create unique digital criminal profiles
- Diversity of data: device/network, image/documentation, behavior/cognitive
 - Criminals can change resources
 - It’s more difficult to change behaviors
 - It’s also more difficult to understand and neutralize all that is being monitored
Apply What You Have Learned Today

• Next week you should:
 – Map the data elements and link processes in your online fraud organization

• In the first three months following this presentation you should:
 – Research your historic data for any linkage and profiling elements that could point to specific criminals
 – Benchmark your linking and criminal profiling capability by talking to colleagues in the industry / online fraud analysts
 – Assess whether your current layers of visibility and analysis tools are adequate for your risk management needs
 – Identify any gaps in your criminal profiling strategy (data layers and tools)
 – Check whether you can link to consortium-based criminal profiling databases

• Within six months you should:
 – Build a plan for closing those gaps, if there’s a business case to do it
Q&A
LinkedIn: Uri Rivner
LinkedIn: Erin Englund