A Cloud Security Architecture Workshop

Dave Shackleford
Sr. Faculty
SANS Institute
@daveshackleford
Cloud Security Architecture Overview

• There are some very well-known architectural principles for cloud that apply to security
• Sadly, there are few industry design frameworks that are accepted for secure cloud architecture
• Over time teaching and consulting, I’ve found a number of core best practices that can apply to any IaaS cloud design
CSA’s Enterprise Architecture

• Seeks to promote a sound reference architecture with best practices and processes for a secure cloud
EA Guiding Principles (1)

- Define protections that enable trust in the cloud
- Develop cross-platform capabilities and patterns for proprietary and open source providers
- Will facilitate trusted and efficient access, administration, and resiliency to the customer/consumer
- Provide direction to secure information that is protected by regulations
- The Architecture must facilitate proper and efficient identification, authentication, authorization, administration, and auditability
- Centralize security policy, maintenance operation, and oversight functions
EA Guiding Principles (2)

- Access to information must be secure yet still easy to obtain
- Delegate or Federate access control where appropriate
- Must be easy to adopt and consume, supporting the design of security patterns
- The Architecture must be elastic, flexible, and resilient, supporting multitenant, multi-landlord platforms
- The Architecture must address and support multiple levels of protection, including network, operating system, and application security needs
EA Reference Architecture ... Ouch.
AWS Well-Architected Framework

- AWS has developed a framework called “Well-Architected” that includes five “pillars”:
 - Operational excellence
 - Security
 - Reliability
 - Performance efficiency
 - Cost optimization
- Offers specific best practices and guidance to help design and implement AWS solutions
A Basic Approach to Sound Cloud Design

- There are many ways of defining “architecture” for the cloud
- Core considerations include:
 - Network connectivity
 - Availability and redundancy
 - Resilience
 - Scalability
 - And so on
- We’ve broken cloud architecture into seven themes that must be followed in all cases (next)
SANS Cloud Architecture Principles

- SANS believes the following are the most critical security architecture principles to embed in all designs:
 - Build in security at every layer
 - Think “components”
 - Design for failure
 - Design for elasticity
 - Make use of different storage options
 - ALWAYS think of “feedback loops”
 - Focus on CSA: Centralization, Standardization, Automation
Build in Security at Every Layer (1)

- Every cloud architecture is composed of unique layers that can be coupled and integrated (or not)
- To some degree, each layer must be “self-defending”
- The new cloud infrastructure and application stack have a number of components
- Each layer needs some sort of security integrated and applied to build a sound “defense-in-depth” architecture for the cloud
- Depending on the layer, some will be applied in-house, others in the CSP environment
Build in Security at Every Layer (2)

<table>
<thead>
<tr>
<th>“Stack” Layer</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Logic + Presentation</td>
<td>WAF, IAM, Scans/Pen tests</td>
</tr>
<tr>
<td>Operating Systems</td>
<td>Configuration, Vulnerability Scanning, Backups, user/privilege management</td>
</tr>
<tr>
<td>Data</td>
<td>Encryption, Backups, DLP</td>
</tr>
<tr>
<td>Network</td>
<td>Access Controls, Firewalls, Routing, DDoS Defense</td>
</tr>
<tr>
<td>Hypervisor</td>
<td>Configuration, access controls, user/privilege management</td>
</tr>
</tbody>
</table>
Given the nature of the cloud, IT changes much more dynamically than ever before.

For this reason, all security measures should ideally be “embedded.”

This means:
- Defining security in code internally
- Including security configuration parameters in VM definitions
- Automating security processes and activities
- Building continuously monitored environments

Many of these ideas are realized in a sound DevSecOps strategy.
Think “Components”

- While this may seem obvious at this point, it’s a major shift for many security professionals.
- We’re used to designing IT (and to some degree, security) as “systems.”
- While some of that holds, in the cloud, we are actually dealing more with disparate components that can be linked and used together in different ways.
- For example, each type of storage within Amazon is a different component with varied security controls.
Think “Components”: One Ring to Rule Them All

- When designing security for each individual component, the major theme you should keep in mind is centralization.
- In other words, are there efficiency opportunities to define and manage security for multiple components in one place?
Think “Components”: The Multi-Cloud Problem

- Many organizations use numerous cloud providers in a hybrid configuration
- What security controls are available in each environment?
- This is a perfect example of why each component needs security “baked in” if possible
- This can add to complexity and operational overhead if not managed well (and early)
Multi-Cloud Brokers

- Another option for some organizations is using a multi-cloud brokering model
- Many traditional telecommunications carriers offer MPLS cloud access to CSPs
 - AT&T NetBond is one example
- There are other, dedicated services available too
 - Equinix offers cloud brokering with its Cloud Exchange Framework
- These options are usually very expensive
 - May offer greater flexibility and control
Design for Failure

- Security professionals don’t like the word “failure” (probably for obvious reasons)
- However, in the cloud, you are likely to encounter failure more often than you would like:
 - Elasticity issues
 - Configuration issues
 - Cloud provider issues
- Not all of these will be within your control, so you will need to plan for things to go wrong (they will)
Design for Failure

- When designing for failure, there are two design aspects to consider:
 - Component level: Each component could fail individually or in some combination
 - Architecture level: The entire environment becomes unavailable
- While unlikely, a provider’s data center could have a problem
 - Or a backbone carrier or other critical aspect could fail
- You need to design redundancy and availability into EVERYTHING within the cloud
 - Or at least those cloud services you care about!
Design for Elasticity

• One of the cloud’s foremost benefits is the ability to rapidly scale up and down as needed for business volume and requirements.

• Designing elasticity into your models means considering the following:
 – Vertical or horizontal scaling?
 – What thresholds are appropriate for scaling up and down?
 – How will inventory management adjust to system volume changes?
 – Images new systems are spawned from
 – Where new systems will operate (network locale)
 – Host-based security + licensing
Storage: Explore Your Options (1)

- There are many types of storage available in the cloud
- Understand each type and which are best suited for your deployment
- Each has its own security options available too
- Revisit data classification and data security policy before planning storage security design
 - Performance matters too, of course!
Storage: Explore Your Options (2)

- When looking into storage options in the cloud, here are things to consider and evaluate:
 - Does the storage option work for operations and development?
 - Does the storage option have appropriate SLAs and uptime?
 - Does the storage option have adequate redundancy and archival?
 - Does the storage meet performance requirements?
 - Does the storage option provide native encryption capabilities?
 - Does the storage option provide access controls?
 - Does the storage option allow for adequate logging and event generation?
 - What does the storage option cost?

- Consider all the benefits and drawbacks of each before choosing!
Security: Design in a “Feedback Loop”

- This is one of the most critical elements of cloud security design
- A huge amount of effort goes into securing resources:
 - On their way to the cloud
 - In the cloud
- Given the dynamic nature of cloud computing, things can (and will) change RAPIDLY
- While we’re building in security controls, ensure you plan for alerting and notification capabilities that continually keep us in the loop
Security “Feedback Loops” = Logging

- Your primary source of feedback is LOGS
- Enable logging everywhere you can:
 - Within the cloud environment/account as a whole
 - For instance, OS types
 - For network platforms
 - For all identity and access management activity
 - For all interconnected services and their activity
- Be sure to secure access to logs, as well
Security “Feedback Loops”: Other Services

- There are numerous alerting and monitoring mechanisms in major cloud environments
 - CloudTrail logging and Azure Activity Logs
 - CloudWatch alarms
 - Simple Notification Service (SNS) alerts
 - Billing Alerts
- Google StackDriver is an alerting method within the Google cloud
- Azure Monitor is a dashboard that aggregates monitoring like activity logs, diagnostic logs, and metrics
- Azure Advanced Threat Analytics can monitor account behavior
Centralization, Standardization, Automation: Centralization

- As a final major theme for design and architecture in the cloud, we’ll touch on CSA: centralization, standardization, and automation
- Centralization is the idea that you need to look at tools and cloud services that ideally integrate into a single dashboard
- It is very easy in cloud deployments to end up with numerous management tools, dashboards, and interfaces to keep up with
- This is not exclusive to security tools—operations and development teams are often faced with the same problem
- Using the same vendor products across cloud environments can help with this (if possible)
Centralization, Standardization, Automation: Standardization

- Standardization is fairly straightforward conceptually
- When designing for the cloud, look for ways to leverage well-known standards:
 - SAML and OpenID Connect for IAM
 - YAML for configs
 - AES-256+ for crypto
Centralization, Standardization, Automation: Automation

- Automation is the core idea behind DevOps, and DevSecOps by extension
- Manual efforts in the cloud are doomed to fail in many cases, as the environment changes rapidly
- Security teams should explore ways to automate their security controls and feedback loops whenever possible
- Scripting and orchestration tools can help!
Managing the Cloud “Blast Radius”

• One of the core security concepts in the world of DevOps and cloud computing is the “blast radius”

• The blast radius is the amount of damage that could be caused if something goes wrong
 – An account or server gets hacked
 – A component fails

• Design your security model in such a way that you limit the damage any one issue could cause
Multiple Accounts for Limiting Blast Radius

- One cloud security strategy that has emerged in recent years is the use of multiple accounts for limiting blast radius.

- Accounts can be created for:
 - Developers
 - Business units
 - Operations
 - Security

- These can then be allowed access to objects and assets in other accounts as needed.

- AWS has a service called “Landing Zone” to help set this up.
 - A newer service called “Control Tower” is also now available to implement this.
Applying This To Your Organization

• Next week you should:
 – Determine your level of overall architecture maturity

• In the first three months following this presentation you should:
 – Ensure you look into multi-account or subscription architectures
 – Ensure centralized, infrastructure-as-code deployments are planned

• Within six months you should:
 – Have a streamlined, central deployment incorporating DevSecOps principles
 – Ensure all feedback loop and storage controls are optimized