Strengthening Supply Chain Security: A Global Effort

Darryn Lim
Director, Policy – APAC
The Software Alliance
@BSAnews
Agenda

- Introduction to BSA
- Threat Landscape
- BSA International Cybersecurity Framework
- BSA Software Security Framework
- BSA Supply Chain Security Principles
- Applying the Principles
- Q&As
Introduction to BSA

- The leading advocate for the global software industry before governments and in the international marketplace
- Headquarters in Washington, DC
- Global operations – APAC regional offices in Singapore, Bangkok, Beijing, New Delhi, Seoul, and Tokyo
- Advocates for public policies that foster technology innovation and drive growth in the digital economy
BSA APAC Policy Members

- Adobe
- Akamai
- AWS
- Apple
- Autodesk
- Aveva
- Bentley
- Box
- Cadence
- Cisco
- Mastercam
- DataStax
- DocuSign
- IBM
- Informatica
- Intel
- MathWorks
- Microsoft
- Okta
- Oracle
- PTC
- Salesforce
- ServiceNow
- Siemens
- Sitecore
- Slack
- Splunk
- Synopsys
- Trend Micro
- Trimble
- Twilio
- Workday
Threat Landscape
Software Vulnerabilities Are Increasing*

Vulnerabilities Reported Annually, 2012-2017

*Flexera, Vulnerability Review 2018: Global Trends
Malware Increasingly Targets Existing Software Vulnerabilities*

- 77% of malware attacks in 2017 exploited vulnerabilities in software already installed on the target system.
- Fileless malware attacks are 10 times more likely to succeed than file-based attacks.
- Cost of attacks ↑ from $5M (2017) to $7.1M (2018)

A Growing Target: The Internet of Things

Increase in attacks against IoT Devices from 2016 to 2017*

Estimated Number of IoT Devices Deployed By 2030**

600%
125 Billion

*Symantec, 2018 Internet Security Threat Report

**IHS Markit, The Internet of Things: A movement, not a market, Oct 2017
Significant APAC Cybersecurity Events

- **Malaysia, October 2017**: Personal data leak affecting **46.2M** mobile subscribers
- **Singapore, July 2018/January 2019**: Two health data breaches affecting **1.5M** SingHealth patients and **14,200** HIV+ individuals
- **Australia, Japan, Thailand, and Vietnam, March 2019**: Toyota suffers a chain of data breaches affecting **3.1M** Toyota and Lexus customers
- **Indonesia, March 2019**: “Gnosticplayers” hack affecting **26M** user accounts
- **India, April 2019**: Wipro (outsourcing firm) phishing breach
Case Study: NotPetya Attack

You became victim of the PETYA RANSOMWARE!

The harddisks of your computer have been encrypted with an unknown encryption algorithm. There is no way to recover your files without the correct key. You can purchase this key on the dark web. To purchase your key and restore your data, visit https://...
Supply Chain Risk Management Rising in Importance

- Supply chains are increasingly becoming interconnected and automated
- The CSA Singapore recently warned that cyber criminals are target supply chains to
 - Extract information from companies involved
 - Hold them to ransom
- Industries dominated by a few companies are especially vulnerable
- Supply chain risk management is more important than before
Supply Chain Attacks on the Rise*

- Attacks on supply chains increased by 78 percent in 2018
- Attacks increasingly through trusted channels:
 - Software update hijacking
 - Malicious code injection into legitimate software

*Symantec, 2019 Internet Security Threat Report
Policy Challenges: Supply Chain Security

- While nations are taking steps to address supply chain security, some policies can actually impede collaborative solutions to transnational threats.

- Examples include:
 - Country-specific technical standards
 - Domestic sourcing requirements
 - Overly restrictive software provenance policies
Policy Implications

1. Blurred lines – criminal tactics + nation state capabilities
2. Cyber threats, real world impacts
3. Supply chain risk management increasingly important
4. Global threats require global solutions
Frameworks for Global Solutions

1. International Cybersecurity Framework
2. Software Security Framework
3. Supply Chain Security Principles
BSA International Cybersecurity Policy Framework
Principles for Effective Cybersecurity Policy

Cybersecurity policies are most effective when:

- Aligned with internationally-recognized technical standards
- Risk-based, outcome-focused, technology-neutral
- Market-driven where possible
- Flexible and adaptable to encourage innovation
- Rooted in public-private collaboration
- Oriented to protect privacy
Key Elements

- Government Organization and Strategy
- Cybersecurity and the Government
- Cybersecurity and the Private Sector
- Cybersecurity and the Citizen
- Criminal Codes
- International Engagement
Government Organization and Strategy

Structure

- Establish a Single National Body Responsible for Cybersecurity
- Clearly Define Stakeholder Roles and Responsibilities
- Establish a Functional, Timely Interagency Process

Strategy

- Issue a National Cybersecurity Strategy
- Issue a Critical Infrastructure Cybersecurity Strategy
- Maintain Up-to-Date National Cybersecurity Incident Response Plan for Critical Infrastructure

Stakeholder Engagement

- Establish Structure for Facilitating Public-Private Partnerships
- Create Mechanism for Supporting National and Sub-National Governments
Cybersecurity and the Government

Preparedness and Response

- Establish and Resource National Computer Emergency Response Team
- Authorize and Encourage Timely Threat Information-Sharing
- Ensure Calibrated Structure for Incident Reporting
- Ensure a Consistent, Reasonable Standard for Personal Data Breach Notification
- Establish a Transparent, Coordinated Process for Government Handling and Disclosure of Vulnerabilities

Procurement

- Keep Acquisition Technology Neutral
- Ensure Use of Licensed, Vendor-Backed Software
- Leverage the Security Benefits of Cloud Services
- Build Security Considerations into Acquisition Processes
- Avoid Domestic Preference Requirements
Cybersecurity and the Private Sector

Data Flows
✓ Enable Cross-Border Data Flows for Business Purposes
✗ Avoid Data Localization Requirements

Critical Infrastructure
✓ Focus on Security Outcomes
✓ Use Risk-Based, Flexible Policy Framework
✗ Avoid Overbroad Definition of Critical (Information) Infrastructure
✓ Align Critical Infrastructure Security with Internationally Recognized Standards
✗ Avoid Indigenous Security Standards
✓ Ensure Any Certification Regimes Are Balanced, Transparent, and Internationally Based
✗ Reject Requirements to Disclose Source Code and Other Intellectual Property

Consumer Products
✓ Promote Market-Driven Solutions
✓ Ensure Any Certification Schemes Are Voluntary, Market-Driven, Broad-Based, and Internationally Aligned
✓ Encourage Adoption of Internationally Recognized Standards
Cybersecurity and the Citizen

Awareness
✓ Invest in Public Cybersecurity Awareness
✓ Create Tools to Inform Consumer Choices

Workforce Development
✓ Build Cybersecurity Awareness into Every Level of Education
✓ Prioritize Diversity in Cybersecurity Education and Training
✓ Support Alternative Pathways to Cybersecurity Careers
Criminal Codes

Cyber Crime Legislation

✓ Establish a Comprehensive Legal Framework Consistent with Budapest Convention on Cyber Crime
✓ Apply Criminal Liability Only to Actors with Criminal Intent
✓ Provide Technical Training and Support for Law Enforcement
International Engagement

Fostering Cooperation

✔️ Integrate Cybersecurity Cooperation into Foreign Policy
✔️ Engage in International Cooperative Efforts
❌ Ensure Export Control Policies Do Not Impede Legitimate Cybersecurity Activity

Upholding International Obligations

✔️ Prevent Territory from Being Used for International Cyber Attacks
❌ Avoid Mandates That IT Systems Manufacturers Support State-Sponsored Hacking
BSA Software Security Framework
A Global Uptick in Software Security Policy Initiatives

- **European Union**
 - Cybersecurity Act/EU-wide certification scheme
 - Burgeoning Duty of Care discussion
 - Liability discussions in Netherlands, Germany, France

- **United States**
 - Draft NIST SSDL Guidance Issued
 - *IoT Cybersecurity Improvement Act* Moving Through Congress (S. 734/H.R. 1668)

- **Singapore**
 - IMDA IoT Cyber Security Guide

- **China**
 - Numerous standards and measures under Cybersecurity Law

- **Japan**
 - IoT Certification Scheme discussions
 - Early-stage discussions of software transparency and software liability
Addressing the Challenge

Governments can collaborate to address the challenge of securing software by encouraging:

- Common security standards and common assessment tools
- Security-by-design principles and secure development lifecycles
- Cyber and supply chain risk management and vulnerability disclosure processes (based on internationally recognized standards)
- Avoiding blanket software provenance policies
- Strategic / long-term policy pathways and security roadmaps
BSA’s Framework for Secure Software

- An approach to software security that is
 - Flexible
 - Outcome-focused
 - Risk-informed
 - Cost-effective
 - Repeatable.

- Provides a common organization and structure to help software developers achieve desired security outcomes
Guiding Principles

- Flexible
- Risk-Based
- Outcome-Focused
- Neutral toward technologies, development processes, and coding languages
- Aligned with internationally recognized standards
Digging Into The Framework

SECURE DEVELOPMENT
Secure development addresses security in the phase of software development when a software project is conceived, initiated, developed, and brought to market.

SECURE CAPABILITIES
Secure capabilities identify key security characteristics recommended for a software product.

SECURE LIFECYCLE
Secure lifecycle addresses considerations for maintaining security in a software product from its development through the end of its life.
Function: Secure Development

- Secure Coding
- Testing and Verification
- Process and Documentation
- Supply Chain
- Tool Chain
- Identity and Access Management
Function: Secure Capabilities

- Support for Identity Management and Authentication
- Patchability
- Encryption
- Authorization and Access Controls
- Logging
- Error and Exception Handling
Function: Secure Lifecycle

- Vulnerability Management
- Configuration
- Vulnerability Notification and Patching
- End-of-Life
The BSA Framework for Secure Software

| Category | Subcategory | Diagnostic Statement | Comments on Implementation | Relevant Standards and Informative Resources |
|---------------------------|-------------|---|---|
| SECURE DEVELOPMENT | SC.1-1 | Threat modeling and risk analysis are employed during software design to identify threats and potential mitigations. Some software developers work in accordance with “zero trust” principles, which assume a pervasively hostile environment. Yet, even with zero trust approaches, threat modeling is important for identifying sensitive data and prioritizing threats for mitigation. | ISO/IEC 27034; OWASP Application Security Verification Standard; SAFECode “Fundamental Practices”; SAFECode “Tactical Threat Modeling”; SAMM; BSIMM; CWSS; CAPEC; OWASP Threat Modeling Cheat Sheet |
| | SC.1-2 | Threats are rated and prioritized according to risk. | ISO/IEC 27034; SAFECode “Fundamental Practices”; SAMM; CWSS; CAPEC; OWASP Threat Modeling Cheat Sheet |
| | SC.1-3 | Software development organizations apply common threat modeling methodologies. | ISO/IEC 27034; SAFECode “Fundamental Practices”; SAMM; CWSS; CAPEC; OWASP Threat Modeling Cheat Sheet; SAFECode “Tactical Threat Modeling” |
| Secure Coding (SC) | | | |
The BSA Framework for Secure Software

<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategory</th>
<th>Diagnostic Statement</th>
<th>Comments on Implementation</th>
<th>Relevant Standards and Informative Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECURE DEVELOPMENT</td>
<td></td>
<td>SC.1. Threat modeling and risk analysis are employed during software design to identify threats and potential mitigations.</td>
<td>Some software development organizations document likely threats. Some software developers work in accordance with “zero trust” principles, which assume a pervasively hostile environment. Threat modeling is important for identifying sensitive data and prioritizing threats for mitigation.</td>
<td>ISO/IEC 27034; SAFECode “Fundamental Practices”; SAMM; CWSS; CAPEC; OWASP Application Security Standard; SAFECode “Fundamental Practices”; SAFECode “Tactical Threat Modeling”; SAMM; BSIMM; CWSS; CAPEC; OWASP Threat Modeling Cheat Sheet</td>
</tr>
<tr>
<td></td>
<td>SC.1-1.</td>
<td>SC.1-1. Software development organizations document likely threats.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SC.1-2. Threats are rated and prioritized according to risk.</td>
<td></td>
<td>ISO/IEC 27034; SAFECode “Fundamental Practices”; SAMM; CWSS; CAPEC; OWASP Threat Modeling Cheat Sheet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SC.1-3. Software development organizations apply common threat modeling methodologies.</td>
<td></td>
<td>ISO/IEC 27034; SAFECode “Fundamental Practices”; SAMM; CWSS; CAPEC; OWASP Threat Modeling Cheat Sheet; SAFECode “Tactical Threat Modeling”</td>
</tr>
</tbody>
</table>
The BSA Framework for Secure Software

<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategory</th>
<th>Diagnostic Statement</th>
<th>Comments on Implementation</th>
<th>Relevant Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECURE DEVELOPMENT</td>
<td>Secure Coding (SC)</td>
<td>SC.1. Threat modeling and risk analysis are employed during software design to identify threats and potential mitigations.</td>
<td>Some software developers work in accordance with “zero trust” principles, which assume a pervasively hostile environment. Yet, even with zero trust approaches, threat modeling is important for identifying sensitive data and prioritizing threats for mitigation.</td>
<td>ISO/IEC 27034; SAFECode “Fundamental Practices”; SAMM; CWSS; CAPEC; OWASP Threat Modeling Cheat Sheet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SC.1-1. Software development organizations document likely threats.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SC.1-2. Threats are rated and prioritized according to risk.</td>
<td>ISO/IEC 27034; SAFECode “Fundamental Practices”; SAMM; CWSS; CAPEC; OWASP Threat Modeling Cheat Sheet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SC.1-3. Software development organizations apply common threat modeling methodologies.</td>
<td>ISO/IEC 27034; SAFECode “Fundamental Practices”; SAMM; CWSS; CAPEC; OWASP Threat Modeling Cheat Sheet; SAFECode “Tactical Threat Modeling”</td>
<td></td>
</tr>
</tbody>
</table>

Comments on Implementation: guidance for tailoring subcategory and diagnostic statements to specific software types and processes.
<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategory</th>
<th>Diagnostic Statement</th>
<th>Comments on Implementation</th>
<th>Relevant Standards and Informative Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECURE DEVELOPMENT</td>
<td>Secure Coding (SC)</td>
<td>SC.1. Threat modeling and risk analysis are employed during software design to identify threats and potential mitigations.</td>
<td>Some software developers work in accordance with “zero trust” principles, which assume a pervasively hostile environment. Yet, even with zero trust approaches, threat modeling is important for identifying sensitive data and prioritizing threats for mitigation.</td>
<td>ISO/IEC 27034; OWASP Application Security Verification Standard; SAFECode “Fundamental Practices”; SAFECode “Tactical Threat Modeling”; SAML; BSIMM; CWSS; CAPEC; OWASP Threat Modeling Cheat Sheet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SC.1-1. Software development organizations document likely threats.</td>
<td>Some software developers work in accordance with “zero trust” principles, which assume a pervasively hostile environment. Yet, even with zero trust approaches, threat modeling is important for identifying sensitive data and prioritizing threats for mitigation.</td>
<td>ISO/IEC 27034; SAML; CWSS; CAPEC; OWASP Threat Modeling Cheat Sheet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SC.1-2. Threats are rated and prioritized according to risk.</td>
<td>Some software developers work in accordance with “zero trust” principles, which assume a pervasively hostile environment. Yet, even with zero trust approaches, threat modeling is important for identifying sensitive data and prioritizing threats for mitigation.</td>
<td>ISO/IEC 27034; SAML; CWSS; CAPEC; OWASP Threat Modeling Cheat Sheet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SC.1-3. Software development organizations apply common threat modeling methodologies.</td>
<td>Some software developers work in accordance with “zero trust” principles, which assume a pervasively hostile environment. Yet, even with zero trust approaches, threat modeling is important for identifying sensitive data and prioritizing threats for mitigation.</td>
<td>ISO/IEC 27034; SAML; CWSS; CAPEC; OWASP Threat Modeling Cheat Sheet</td>
</tr>
</tbody>
</table>

Relevant standards and informative resources: Framework is aligned to relevant international standards, and points to relevant best practice literature.
BSA Supply Chain Security Principles
BSA Supply Chain Security Principles

- Risk Management
- Interoperability
- Transparency
- Fairness
- Research and Development
- Collaboration
- Discretion
- Enforcement
BSA Supply Chain Security Principles

Risk Management

- Governments should adopt risk management approaches to supply chain security
- Risk management entails:
 - understanding risk through the identification of likely threats, vulnerabilities, and potential consequences
 - tailoring mitigation strategies to risks
 - prioritizing actions based on the most relevant and potentially impactful risks
- Risk management approaches
 - provide flexibility for stakeholders to adapt to a constantly evolving threat environment
 - help policymakers avoid unintended consequences of mistargeted policies
BSA Supply Chain Security Principles

Interoperability

- Modern technology supply chains are often transnational
- Policies should be interoperable across borders
 - Internationally recognized, industry driven standards help facilitate transnational operational collaboration against significant cyber threats

Transparency

- Opaque government supply chain risk management policies and processes create confusion and can undermine economic competitiveness of businesses
- Supply chain risk management policies should be transparent to the public, with specific actions notified to impacted stakeholders
- Governments should have vulnerability disclosure policies (e.g., in accordance with vulnerability disclosure methodologies described in ISO/IEC 29147).
BSA Supply Chain Security Principles

Fairness

- There should be meaningful mechanisms for resolving disputes and for stakeholders to be heard
- Dispute resolution mechanisms create an environment of certainty and predictability without limiting tools for mitigating risk

Research and Development

- Security techniques must adapt to an ever-changing environment of new technologies and new threats
- R&D of new technological approaches to fostering supply chain integrity helps stakeholders maintain the advantage against bad actors
BSA Supply Chain Security Principles

Collaboration

- Supply chain risk management efforts will be most effective when undertaken with all stakeholders concerned
- Governments should embrace public-private partnerships to secure supply chains and develop best practices for supply chain risk management
- G-to-G collaboration also important

Discretion

- Governments should not intervene in global supply chains

Enforcement

- Governments should pursue aggressive law enforcement against malicious actors
Applying the Frameworks/Principles
Applying the Frameworks/Principles

• In the Policy Sphere:
 – How can the frameworks/principles serve as a useful benchmark to inform policy regulations, certification schemes, and similar tools?

• In the Marketplace:
 – How can the frameworks/principles help the industry deliver more secure and trusted software throughout the supply chain?
Summing It Up

1. The threat landscape is rapidly changing
2. Software is critical to the supply chains of products and services across almost every industry
3. Software security is essential to supply chain security
4. A global approach is required
5. BSA’s frameworks/principles provide a foundation for effective policy and market interventions to improve software and supply chain security
Links to Resources

- **Main BSA site:** www.bsa.org
- **BSA Cybersecurity Microsite:** bsacybersecurity.bsa.org
- **BSA International Cybersecurity Policy Framework:** https://www.bsa.org/reports/bsa-international-cybersecurity-framework
- **BSA Software Security Framework:** https://www.bsa.org/reports/bsa-framework-for-secure-software
- **BSA News Room:** https://www.bsa.org/news-events/news
- **Twitter:** [@BSAnews](https://twitter.com/BSAnews)
Thank You